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Abstract: We study magnetic flux tubes in the Higgs vacuum of the N = 1∗ mass

deformation of SU(Nc), N = 4 SYM and its large Nc string dual, the Polchinski-Strassler

geometry. Choosing equal masses for the three adjoint chiral multiplets, for all Nc we

identify a “colour-flavour locked” symmetry, SO(3)C+F which leaves the Higgs vacuum

invariant. At weak coupling, we find explicit non-Abelian k-vortex solutions carrying a

ZNc-valued magnetic flux, with winding, 0 < k < Nc. These k-strings spontaneously break

SO(3)C+F to U(1)C+F resulting in an S2 moduli space of solutions. The world-sheet sigma

model is a nonsupersymmetric CP
1 model with a theta angle θ1+1 = k(Nc − k)θ3+1 where

θ3+1 is the Yang-Mills vacuum angle. We find numerically that k-vortex tensions follow

the Casimir scaling law Tk ∝ k(Nc − k) for large Nc. In the large Nc IIB string dual, the

SO(3)C+F symmetry is manifest in the geometry interpolating between AdS5 ×S5 and the

interior metric due to a single D5-brane carrying D3-brane charge. We identify candidate

k-vortices as expanded probe D3-branes formed from a collection of k D-strings. The

resulting k-vortex tension exhibits precise Casimir scaling, and the effective world-sheet

theta angle matches the semiclassical result. S-duality maps the Higgs to the confining

phase so that confining string tensions at strong ’t Hooft coupling also exhibit Casimir

scaling in N = 1∗ theory in the large Nc limit.
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1. Introduction

Supersymmetric gauge theories, following the works of [1], have provided a large class of

examples where condensation of monopoles is the mechanism for confinement of electric

charges. Softly broken N = 2 supersymmetric gauge theories confine via a magnetic version

of the Abelian Higgs mechanism. In these theories the confined, heavy, coloured sources

are held together by Abelian strings (Abrikosov-Nielsen-Olesen solitons [2, 3]). In contrast,

in pure Yang-Mills theory with SU(Nc) gauge group for instance, heavy external charges

are expected to be confined by chromoelectric flux tubes which annihilate in groups of Nc,

which we refer to as ZNc-strings. One example where the dynamics of ZNc strings may be

accessed at weak coupling, is presented by the so-called N = 1∗ theory [4 – 9] which is a

mass deformation of N = 4 theory preserving N = 1 supersymmetry (SUSY). What makes

this theory particularly interesting is that it also has a known large Nc string dual [8] which

brings with it the possibility of exploring flux tube dynamics in the large Nc limit.

The N = 1∗ theory has extremely rich infrared dynamics and beautiful phase struc-

ture, made possible in part by the Olive-Montonen electric-magnetic duality [10] (enlarged

to SL(2,Z)) which it inherits from its parent N = 4 theory. For example, the theory

with SU(Nc) gauge group has a large number of vacua with a mass gap, each of which is

realized in a distinct phase. The action of SL(2,Z) exchanges and permutes these vacua.

The vacuum in the Higgs phase, where the gauge group is broken completely, is mapped

by S-duality (inversion of the gauge coupling) onto the confining vacuum where the gauge

group is classically unbroken and the theory confines in the infrared (IR). The ZNc chro-

moelectric flux tubes in the confined phase at strong gauge coupling, get directly mapped

to magnetic flux tubes in the Higgs vacuum at weak coupling. At weak coupling, the Higgs

vacuum is semiclassical and hence the physics of the associated flux tubes is accessible.

The study of these for general Nc, and particularly their large Nc gravity duals , will be

the subject of this paper.

In recent years, certain special flux tubes at weak coupling have been encountered

in gauge theories (with and without SUSY) with U(Nc) gauge group and Nf flavours

in the fundamental representation [11, 12] and extensively studied therein [13 – 15]. The

crucial feature of all these strings at weak coupling is the presence of orientational moduli

associated with rotations within a colour-flavour locked symmetry. We will refer to these

as “non-Abelian” flux tubes. The interested reader can find reviews in [16 – 19]. In the

context of N = 1∗ theory with SU(2) gauge group, non-Abelian vortices in the Higgs

vacuum were constructed and studied first in [20].

The basic example of the non-Abelian strings is in the context of N = 2, U(Nc) gauge

theory with Nf flavours and Nf = Nc = N and a Fayet-Iliopolous term. In this case

there is an SU(N)C+F symmetry which is left unbroken by the vacuum; the vortex soli-

ton breaks this symmetry to (SU(N − 1) × U(1))C+F . The vortex internal space is then

parameterized by

MN=2 =
SU(N)C+F

(SU(N − 1) × U(1))C+F
= CP

N−1 .

In this paper we will study a similar “colour-flavour locked” symmetry that appears

– 2 –



J
H
E
P
1
2
(
2
0
0
8
)
0
7
7

in the Higgs vacuum of N = 1∗ theory with SU(Nc) gauge group. When the masses of

the three adjoint N = 1 chiral multiplets in the theory are chosen to be equal, an SO(3)

subgroup of the original global SO(6)R symmetry of N = 4 theory is left unbroken. The

VEVs of the scalar fields in this phase are proportional to Nc dimensional SU(2) generators.

This fact allows to find a specific combination of the global SO(3) and colour generators,

that are left unbroken by the VEVs of the adjoint scalars. We denote this combined

colour-flavour symmetry as SO(3)C+F .

Since all fields in the theory are in the adjoint representation of the gauge group, the

topologically stable flux tubes are classified by a ZNc quantum number k = 1, 2, . . . Nc−1.1

In the first part of this paper we find a general ansatz for the k-vortex solution, generalizing

the Nc = 2, k = 1 case studied in [20]. The ansatz is given in explicit form for Nc = 3, 4

and a natural algorithm for higher rank gauge groups presents itself. Since the equations of

motion are not analytically tractable, a numerical solution of the vortex profile functions is

necessary. We were able to perform the numerical computations for k-vortices in theories

with 2 ≤ Nc ≤ 6.

The k-vortex solution breaks the SO(3)C+F symmetry to U(1)C+F , so that the vortex

internal moduli space (for every k) is parameterized by

MN=1∗ =
SO(3)C+F

U(1)C+F
= CP

1 .

Acting on a given k-string solution with the broken symmetry generators rotates the ori-

entation of the non-Abelian magnetic flux within the colour space. A crucial difference

between the vortices in N = 1∗ theory and those in theories with N = 2 SUSY, is that the

latter are BPS solutions. With SO(3) symmetric masses, the N = 1∗ vortices are far from

BPS2 and have no fermionic “super-orientational” zero modes.

The low-energy effective theory for the fluctuations of the light modes on the k-string

is determined by performing an adiabatic, world-sheet dependent colour-flavour locked

rotation. This excites the internal, orientational zero mode degrees of freedom localised on

the vortex. The resulting action is that of a sigma model with S2 as target space and the

following Lagrangian,

S1+1 =

∫

dz dt

(

BNc,k(∂s~n)2 − θNc,k
1+1

8π
ǫsrǫabcn

a∂sn
b∂rn

c

)

, (1.1)

where ~n is a position vector on the unit sphere. This is an effective theory with a UV cutoff

determined by the vortex thickness. Importantly, the effective theory is an asymptotically

free quantum theory and its IR dynamics depends strongly on the vacuum theta angle [14,

23 – 26]. Therfore, while the four dimensional gauge theory is semiclassical, the vortex

theory is highly quantum and becomes strongly interacting. The classical value of the

1Flux tubes at weak coupling with ZNc
quantum numbers were also studied in numerous papers (see [21,

22] for an incomplete list).
2There is a limiting regime of mass parameters (two masses equal, and the third being relatively small)

where the N = 1∗ theory can be viewed as softly broken N = 2∗ theory, but we will not be particularly

interested in this limit. Abelian vortices in softly broken N = 2∗ theory are BPS.
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sigma model coupling BNc,k can be determined in terms of the Yang-Mills coupling g2
YM,

for all k andNc, by a non-trivial numerical calculation involving the vortex profile functions.

The classical sigma model coupling constant turns out to be weak for weak gauge coupling.

On the other hand, the effective 2-dimensional θ angle can be computed analytically in

general, to yield a simple, but very interesting result,

θNc,k
1+1 = k(Nc − k)θ3+1 , (1.2)

where θ3+1 is the vacuum angle of the four dimensional gauge theory. This relation is

significant for two reasons. First, it satisfies the basic requirement that the Higgs vacuum

should be invariant under shifts of θ3+1 by multiples of 2π. Second, whenever θ1+1 = π, the

world-sheet theory is integrable and flows to a conformal fixed point with massless SO(3)

doublets as the only excitations. For all other values of θ1+1 the two dimensional theory

develops a mass gap and its only excitations are triplets of SO(3) which may be viewed

as confined meson-like states made up of doublets. This in turn implies that there exist

various special values for θ3+1, determined by (1.2) for every k, at which different k-vortex

theories flow to an interacting conformal fixed point with central charge c = 1.

Since we find the explicit k-vortex solutions, albeit numerically, we are in a position

to ask how their tensions scale with Nc. This is a question that has attracted considerable

interest in recent years, from various perspectives [9, 27 – 30] for gauge theories with a ZNc

symmetry. We perform a numerical analysis of the semiclassical k-string tensions and their

ratios for Nc = 4, 5, 6. We find that as Nc is increased, the results are extremely well

approximated by a Casimir scaling law with an accuracy better than 0.1%. Although we

do not yet have an understanding of the physics behind this result, we are able to confirm

that Casimir scaling of the tensions becomes precise in the large Nc gravity dual. At this

point it is worth emphasizing that S-duality maps these Higgs phase results at g2
YM ≪ 1

to the confining vacuum at g2
YM ≫ 1.

The second part of our paper is devoted to a study of k-strings in the Higgs vacuum

in the large Nc, Type IIB string dual obtained by Polchinski and Strassler [8]. The super-

gravity background which is dual to the Higgs vacuum, becomes applicable when Nc → ∞
and Nc/g

2
YM ≫ 1. Since this also includes the regime of weak gauge coupling, we cannot

expect supergravity to be valid in the entire geometry as a weakly coupled regime would

correspond to large curvatures in the string dual. This also occurs in the Higgs vacuum,

where the dual background interpolates between AdS5×S5 asymptotics and a deep interior

portion generated by a D5-brane wrapped on a flux supported two-sphere. The D5-brane

which carries Nc units of D3-brane charge, makes an appearance due to the Myers effect [31]

resulting from the N = 1∗ deformation. In the crossover region, near the D5-brane, the

geometry becomes strongly curved and we expect large string corrections. Despite this we

can certainly look for candidate probe brane configurations that are expected to be dual

to the k-vortices of the Higgs vacuum in the large Nc limit. By S-duality, the picture in

the Higgs vacuum is exchanged with the confining vacuum at strong ’t Hooft coupling:

Nc/g
2
YM → g2

YMNc ≫ 1 which is the usual condition for the validity of supergravity.

With all the above caveats in mind, we look for our candidate probe branes in the dual

geometry. The SO(3)C+F is obvious in the geometry as the sphere wrapped by the D5-
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brane has an SO(3) isometry in the limit of equal masses for the adjoint chiral multiplets.

The k = 1 vortex is naturally a probe D1-brane in the Higgs vacuum. In the brane picture,

the D1-brane binds to the D5-brane which has a world-volume B-field endowing the 5-

brane with D3 charge. This bound state corresponds to a magnetic flux tube. In the

gravity picture, the probe D1-brane sits at a radial position near the D5-brane. Despite

the possibility of stringy corrections to the background, we use the probe Dirac-Born-Infeld

action and the Chern-Simons terms to obtain the effective Lagragian in eq. (1.1), with

BNc,1 =
πNc

g2
YM

, θNc,1
1+1 = Ncθ3+1 . (1.3)

The value of θNc,1
1+1 which is found in the dual is consistent with eq. (1.2) for large Nc. The

tension of this configuration can also be computed (as originally done in [8]) and yields

Tk=1 = 2πm2Nc/g
2
YM.

In order to model the k-string with k ∼ O(Nc), motivated by the Myers dielectric effect

on a collection of k D-strings in the Higgs vacuum, we use a D3-brane with the topology of

R
1,1×S2, with k units of flux in the compact directions. Crucially, the primary contribution

to the tension of this D3-brane is a disc stretching inside the D5-sphere, a picture that we

find to be consistent with the baryon vertex in N = 1∗ theory. From the D3-brane picture

we find that the vortex tension follows the Casimir scaling law

Tk = 2π
m2

g2
YM

k(Nc − k) . (1.4)

reproducing precisely the semiclassical field theory result which was determined numeri-

cally. Most remarkably the Chern-Simons terms of the probe brane also compute the theta

angle on the k-vortex worldsheet, exactly matching eq. (1.2), the weak coupling gauge

theory result.

The agreement between the gravity dual and semiclassical gauge theory physics is

surprising and clearly needs an explanation. An important aspect of the probe brane

results from the string dual is that the physical quantities that agree with the gauge theory

- the k-string tension and the worldsheet theta angle - do not appear to receive significant

contributions from the strongly curved parts of the geometry. The D3-brane k-string

tension arises mainly from a disc-like portion that effectively sees a flat geometry inside the

D5-sphere, while the theta angle originates in the Chern-Simons term which is insensitive

to the metric. Therefore, we believe that the above picture and results are robust.

The paper is organized as follows. In section 2 we review certain aspects of the N = 1∗

field theory. In section 3 we present solitonic solutions for the k-strings and present the

results of numerical analysis. In section 4 we derive the vortex world-sheet effective action

from a direct calculation. Section 5 deals with the probe brane calculation in the Polchinski-

Strassler background for the Higgs vacuum. Section 6 briefly summarizes our conclusions.

Some details of the interior geometry in the Polchinski-Strassler background are presented

in an appendix.
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2. The field theory setting

In this section we cover some of the basic facts regarding the N = 1∗ field theory with

SU(Nc) gauge group. We pay particular attention to the theory in the Higgs phase, and

for a specific choice of the mass deformation parameters. The physics in this vacuum is

related directly via S-duality to the confining phase of the theory.

2.1 The N = 1∗ deformation of N = 4 SYM

We begin by reviewing the field content and the microscopic Lagrangian of the N =

1∗ theory. In the language of N = 1 supersymmetry, the N = 1∗ theory contains an

N = 1 vector multiplet Wα and three chiral multiplets (Φ1,Φ2,Φ3), transforming in the

adjoint representation of the gauge group which we take to be SU(Nc). The theory is

obtained by a relevant, mass deformation of N = 4 supersymmetric Yang-Mills theory.

The superpotential of N = 4 SYM reads,

W =
1

g2
YM

Tr([Φ1,Φ2]Φ3). (2.1)

The superpotential can be deformed by adding N = 1 SUSY preserving mass terms for

the adjoint matter fields,

∆W =
1

g2
YM

3∑

i=1

1

2
miTr(Φ2

i ). (2.2)

This is a relevant deformation and the resulting theory exhibits nontrivial dynamics in

the infrared, resulting in a rich phase structure. In the UV however, the theory flows to

N = 4 SYM, with the gauge coupling remaining a freely adjustable parameter. Thus the

N = 1∗ theory has, in addition to three complex mass parameters, a dimensionless, tunable

complexified gauge coupling

τ =
4πi

g2
YM

+
θ3+1

2π
. (2.3)

In Euclidean space, the bosonic part of the action is,

SE
b =

∫

d4x




1

g2
YM




1

4
F a

µνF
aµν +

3∑

j=1

Tr|DµΦj|2 + VD + VF



+
i θ3+1

32π2
F a

µν F̃
a
µν



 , (2.4)

where we have used the same symbol Φj, for the chiral superfields as for their lowest

(scalar) components. We define the SU(Nc) generators T a, (a = 1, 2, . . . N2
c − 1), (with

Fµν = TaF
a
µν), with the usual normalization Tr(TaTb) = 1

2δab, while the gauge covariant

derivative is

DµΦk = ∂µΦk − i[Aµ,Φk]. (2.5)

The scalar potential is the sum of VF and VD, the F and D-term contributions respectively:

VF = Tr
(

w1.w
†
1 + w2.w

†
2 + w3.w

†
3

)

, wi = ǫijkΦjΦk +miΦi , (2.6)

and

VD = −1

4
Tr
(

[Φ†
1,Φ1] + [Φ†

2,Φ2] + [Φ†
3,Φ3]

)2
. (2.7)

– 6 –
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In this paper we will be mainly interested in the case where the masses of the three

adjoint chiral multiplets are equal:

m1 = m2 = m3 = m. (2.8)

With this choice, the superpotential term ∆W breaks the SO(6)R global symmetry of the

N = 4 theory to an SO(3) subgroup under which the complex chiral multiplets (Φ1,Φ2,Φ3),

transform as a triplet. In the N = 1∗ theory, this SO(3) acts as an ordinary global

symmetry, and not as an R-symmetry.

2.2 Higgs and confining vacua

The mass deformation above results in a large set of vacuum configurations determined by

the F-flatness conditions (modulo complex gauge transformations),

Φi = − 1

m
ǫijk ΦjΦk. (2.9)

As is well-known [5, 6], the solutions to these equations may be classified in terms of all

Nc-dimensional representations the SU(2) algebra. Each such classical ground state then

splits into a certain number quantum vacua depending on the non-Abelian gauge symmetry

subgroup left unbroken by the classical solution. The quantum ground states are in one to

one correspondence with all possible phases of SU(Nc) gauge theory with adjoint matter,

in four dimensions.

Of particular interest are the Higgs and confining vacua which correspond to the Nc di-

mensional ireducible representation and the trivial representation, respectively. The VEVs

of the adjoint scalars in the Higgs vacuum are proportional to the generators of the irre-

ducible SU(2) representation with dimension Nc,

Φl = imJl , (l = 1, 2, 3). (2.10)

For generic Nc, the SU(2) representation is labelled by j = Nc−1
2 with J3 chosen to be the

usual diagonal matrix

J3 = diag(j, j − 1, . . . ,−j) ; j =
Nc − 1

2
. (2.11)

The only non-zero elements of the matrices J1, J2 are off-diagonal, given by

(J1)a, a+1 = (J1)a+1, a =

√

a(Nc − a)

2
, a = 1, 2, . . . Nc − 1 (2.12)

(J2)a, a+1 = −(J2)a+1, a = −i
√

a(Nc − a)

2
.

The usual relation between the generators of the SU(2) algebra and the quadratic Casimir

then follows,

J2
1 + J2

2 + J2
3 = j(j + 1)1 =

(N2
c − 1)

4
1 . (2.13)

This relation leads to a natural association of the Higgs vacuum of N = 1∗ theory with

fuzzy sphere configurations of D3 branes in the string theory dual [8].

– 7 –



J
H
E
P
1
2
(
2
0
0
8
)
0
7
7

The results we deduce below for magnetic flux tubes in the Higgs vacuum, will have

a direct bearing on the tension of the chromoelectric flux tubes in the confining vacuum.

This is because the SL(2,Z) electric-magnetic duality of the parent N = 4 theory permutes

different IR phases of the N = 1∗ theory [4 – 6]. In particular, the Higgs and confing vacua

are exchanged under S-duality: τ → −1/τ .

2.3 Colour-flavour locking

The VEVs of the adjoint scalars in the Higgs vacuum break the SO(3) global symme-

try and the SU(Nc) gauge symmetry. However, it is always possible to find a combined

global colour-flavour rotation which is unbroken [20]. This combined SO(3)C+F global

symmetry subgroup can be understood as follows. Any global SO(3) rotation of the triplet

(Φ1,Φ2,Φ3) can be undone by a global colour transformation whose generators are cho-

sen to be proportional to the VEVs of the adjoint scalars i.e., the Nc dimensional SU(2)

generators. More explicitly, we first rotate the triplet (Φ1,Φ2,Φ3) with the flavour matrix

UF = exp(Tjaj), where Tj are the following SO(3) generators,

T1 =






0 0 0

0 0 1

0 −1 0




 , T2 =






0 0 −1

0 0 0

1 0 0




 , T3 =






0 1 0

−1 0 0

0 0 0




 . (2.14)

This transformation acts in the flavour space as

~Φ → UF
~Φ . (2.15)

Then let us introduce the global colour matrix WC = exp(iJlal), acting as:

Φi →WC ΦiW
†
C , (2.16)

where Jl are the Nc dimensional representations of SU(2) generators.

A combination of the above flavour and colour rotations are unbroken by the scalar

VEVs. The existence of this SO(3)C+F symmetry allows the determination of the world-

sheet sigma model of vortices (magnetic flux tubes) in the Higgs vacuum, as we see below.

2.4 Higgs vacuum spectrum

The perturbative spectrum in the Higgs vacuum for Nc = 2 is given by an SO(3)C+F

triplet of massive vector N = 1 multiplets with mass
√

2m, one chiral multiplet with mass

m and 5 chiral multiplets with mass 2m. For general Nc the perturbative spectrum has

been computed in [34]. The result is the following: there are always 3 massive vectors

multiplets with mass
√

2m and one chiral multiplet3 with mass m. In addition, for every

k = 2, . . . , Nc − 1 there are 4k massive chiral multiplets with mass km, 2k + 1 massive

vectors with mass
√

k(k + 1)m and lastly, a set of 2Nc + 1 chiral multiplets with mass

Ncm. For every Nc all these particles fit in representations of SO(3)C+F .

3In [34], the spectrum of the U(Nc) gauge theory was determined, which differs slightly from the SU(Nc)

theory discussed here. In particular, for U(Nc), there are three additional chiral multiplets with mass m

and one massless vector multiplet.
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A beautiful feature of the Higgs vacuum of the N = 1∗ theory is that in the large Nc

limit it provides a deconstruction of a six dimensional theory compactified on a sphere.

In particular, as discussed in [34], the perturbative spectrum of the U(Nc), N = 1∗ the-

ory, is identical to the spectrum of the Maldacena-Nuñez twisted compactification of the

N = (1, 1) six dimensional U(1) gauge theory on a two-dimensional sphere. This interpre-

tation is a direct consequence of the association of the Higgs vacuum with a fuzzy sphere

configuration [35] as described above.

3. The ZNc
vortex as a soliton

3.1 General discussion

Since the N = 1∗ theory has only fields transforming in the adjoint representation of

the gauge group, the Lagrangian is invariant under transformations in the center ZNc of

SU(Nc). In the Higgs vacuum, magnetic charges valued in ZNc = π1 [SU(Nc)/ZNc ] are

confined by magnetic flux tubes, also carrying a ZNc charge. Since the fluxes are defined

modulo Nc, they annihilate in groups of Nc. At weak coupling gYM ≪ 1, the physics in

the Higgs vacuum is semiclassical and the magnetic flux tubes should be understood as

ordinary non-Abelian vortex string solutions of the classical equations of motion.

In this section we introduce an ansatz for solitonic k-strings in the Higgs vacuum of

the N = 1∗ theory with gauge group SU(Nc) in the semiclassical limit gYM ≪ 1. We

will write the ansatz explicitly for Nc = 2, 3, 4. The resulting vortices carry magnetic flux

k = 1, 2, . . . , Nc − 1, defined modulo Nc. Since they annihilate in groups of Nc, Nc = 4

is the minimal gauge group for which a non-trivial k = 2 string appears. There is also

a k = 2 vortex for Nc = 3, but is essentially equivalent to the k = 1 vortex under the

transformation k → Nc − k.

The generalization of our ansatz to general k and Nc is straightforward, but explicit

calculations with these ansätze get quite complicated. For generic Nc and k, in order to

solve the equations of motion of the gauge theory, we need to introduce an ansatz which

depends on 3(Nc − 1) independent profile functions for the vortex. We have performed

explicit numerical computations for 2 ≤ Nc ≤ 6 and generic k.

The classical equations of motion for the bosonic fields read

∂µF
µν − i[Aµ, F

µν ] =
i

2

3∑

l=1

(

[DνΦl,Φ
†
l ] + [DνΦ†

l ,Φl]
)

, (3.1)

DµDµΦi = (mw†
i − ǫijl[w

†
j ,Φ

†
l ]) +

∂VD

∂Φi
. (3.2)

Below we list explicit vortex solutions which satisfy

Φi = −Φ†
i , i = 1, 2, 3. (3.3)

so that the D-term contribution to the potential is identically zero when evaluated on the

solution, and the resulting equations of motion are somewhat simpler. For general Nc,

there are Nc − 1 distinct topological sectors labelled by an integer k with 0 < k < Nc.
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The vortex configurations have the adjoint scalars Φi approaching, at infinity, a gauge

transform of their VEVs in the Higgs vacuum. In particular, certain matrix elements of the

adjoint scalars undergo a 2π phase rotation upon winding once around the vortex. This

phase rotation corresponds to a gauge transformation (at infinity) which is single-valued

in SU(Nc)/ZNc . In our ansätze below, the solutions with winding number k = 1 will have

the scalars winding at infinity, effectively generated by

Y1 =
1

Nc
Diag(1, . . . , 1,−(Nc − 1)), (3.4)

resulting in a chromomagnetic flux proportional to Y1. Thus the flux picks out a specific

direction in colour-flavour space and the associated string is truly non-Abelian.

In these solutions, Φ3 is chosen to have no azimuthal variation, whilst both Φ1 and

Φ2 have nontrivial angular dependence, away from the vortex core. In particular, as the

azimuthal angle ϕ varies from 0 to 2π, the components (Φ1,2)Nc−1,Nc wind with a phase

eiϕ, while (Φ1,2)Nc,Nc−1 wind with the opposite phase e−iϕ.

For generic winding 1 < k < Nc the flux carried by the corresponding k-vortex is

proportional to

Yk = Diag







k

Nc
, . . . ,

k

Nc
︸ ︷︷ ︸

Nc−k elements

, −Nc − k

Nc
, . . . ,−Nc − k

Nc






, (3.5)

and away from the vortex core, the adjoint scalars behave as

Φ1,2(r, ϕ) = eiYkϕ Φ1,2(r, ϕ = 0) e−iYkϕ (3.6)

while Φ3 has only a radial dependence. Under the effect of this rotation, the components

(Φ1,2)Nc−k,Nc−k+1 and (Φ1,2)Nc−k+1,Nc−k wind around the vortex with phase eiϕ and e−iϕ

respectively. We believe that these are the solutions of lowest tension in each topological

sector k, as each field winds at infinity exactly once. The solutions also display an obvious

vortex/anti-vortex symmetry, which is evident under the replacement k → Nc − k.

The explicit vortex solutions will break the SO(3)C+F global symmetry. However,

they are invariant under the action of a U(1) subgroup corresponding to global rotations

acting on (Φ1,Φ2). The action of the broken global symmetry generators then leads to a

SU(2)/U(1) ≃ CP
1 moduli space of solutions for generic (Nc, k).

3.2 Nc = 2

For SU(2) gauge group, the vortex solutions were first found in [20]. Here we rederive their

result for completeness,

Φ1 =
im

2
ψ1(r)

(

0 eiϕ

e−iϕ 0

)

, Φ2 =
im

2
ψ1(r)

(

0 −ieiϕ
ie−iϕ 0

)

, (3.7)

Φ3 =
im

2
κ1(r)

(

1 0

0 −1

)

,

– 10 –
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Figure 1: The vortex profile functions for Nc = 2: κ1 (solid), ψ1 (long dashes), f (short dashes).

where ψ1 and κ1 are profile functions to be determined by the equations of motion. Both

approach unity as r → ∞, in order to match up with the Higgs VEVs. Near the origin ψ1

vanishes so that the solution is smooth at r = 0. It is obvious that this configuration will be

invariant under a combination of an SO(2) flavour rotation acting on the pair (Φ1,Φ2) and

a global colour rotation generated by σ3. Hence the full SO(3)C+F is broken to U(1)C+F .

The gauge field is solved by a typical vortex form

Ax =
−y
r2

(1 − f(r))Y, Ay =
x

r2
(1 − f(r))Y, Y =

1

2
σ3. (3.8)

This picks out a direction in the colour space and results in a magnetic flux also propor-

tional to Y ,

Fxy = −f
′(r)

r
Y. (3.9)

The ansatz which is axisymmetric under rotations about the z-axis, can be used to

evaluate the action functional per unit length. This yields the vortex tension functional

T = 2π

∫

rdr

(
f ′2

2r2
+
m2κ′21

2
+m2ψ′2

1 +
m2ψ2

1f
2

r2
+
m4

2
((κ1 − ψ2

1)
2+2ψ2

1(κ1 − 1)2)

)

. (3.10)

It is easily checked that the equations of motion for the profile functions that follow from

varying this tension functional are the same as those following from (3.1) and (3.2). The

profile functions are thus determined by solving,

f ′′ − f ′

r
− fψ2

12m
2 = 0, (3.11)

ψ′′
1 +

ψ′
1

r
− ψ1f

2

r2
= m2ψ1(ψ

2
1 + κ2

1 − 3κ1 + 1), (3.12)

κ′′1 +
κ′1
r

= m2(2ψ2
1κ1 − 3ψ2

1 + κ1). (3.13)

The above equations can be solved numerically and the results are plotted in figure 1.

We learn from the solution that ψ1 grows from zero at the core of the vortex to unity at
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infinity. At the same time, κ1 remains non-zero at the string core whilst approaching 1

asymptotically. Hence, in the core Φ3 6= 0, Φ1 = Φ2 = 0, so that there is a Coulomb-like

phase, shielded by a crossover region which eventually merges with the Higgs phase vacuum

at infinity. The profile function f(r) shows that the magnetic field ∼ f ′(r)/r is non-zero

in the Coulomb-like phase, concentrated in a neighbourhood of the origin, while vanishing

in the asymptotic Higgs vacuum.

3.3 Nc = 3

Having understood the structure of the Z2 string for SU(2), we can now apply our general

non-Abelian string ansatz described in section 3.1, to higher rank gauge groups. For SU(3),

and for k = 1 our general ansatz takes the form,

Φ1 =
im√

2






0 ψ1 0

ψ1 0 ψ2e
iϕ

0 ψ2e
−iϕ 0




 , Φ2 =

im√
2






0 −iψ1 0

iψ1 0 −iψ2e
iϕ

0 iψ2e
−iϕ 0




 , (3.14)

Φ3 = im






κ1 − κ2/2 0 0

0 κ2 0

0 0 −κ1 − κ2/2




 .

The forms of Φ1 and Φ2 are both motivated by their Higgs phase VEVs, imJ1 and imJ2

respectively. At infinity, the profile functions ψ1 and ψ2 approach unity, while ψ2 vanishes

at the origin so that the solution remains smooth. As we go around the origin, Φ1 and Φ2

undergo a phase rotation generated by

Y1 =
1

3
Diag(1, 1,−2). (3.15)

The magnetic flux for the solution turns out to be proportional to Y1, which satisfies

exp(2πiY1) = Diag(e2πi/3, e2πi/3, e2πi/3). (3.16)

The gauge field is modified slightly from the SU(2) case,

Ax =
−y
r2

((1 − f(r))Y1 + g(r)λ) , Ay =
x

r2
((1 − f(r))Y1 + g(r)λ) , (3.17)

where λ = 1
2Diag(1,−1, 0) and g(r) is a new profile function. The non-Abelian magnetic

field then is

Fxy = −f
′(r)

r
Y1 +

g′(r)

r
λ. (3.18)

As in the SU(2) example, we can evaluate the energy per unit length for the ansatz to

obtain the tension functional which can be varied to yield the equations of motion,

T = 2π

∫

r dr

(
2f ′2

3r2
+
g′2

2r2
+

1

2
m2(4κ′21 + 3κ′22 ) + 2m2(ψ′2

1 + ψ′2
2 ) + (3.19)

+
1

2r2
m2
(
4g2ψ2

1 + (g − 2f)2ψ2
2

)
+

1

2
m4

(
1

2
(2κ1 − κ2 − 2ψ2

1)2 +
1

2
(2κ1 + κ2 − 2ψ2

2)
2

2(κ2 + ψ2
1 − ψ2

2)
2 + (2 − 2κ1 + 3κ2)

2ψ2
1 + (2 − 2κ1 − 3κ2)

2

))

.
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Once again the equations of motion following from this functional are consistent with the

equations of motion of the full theory, eqs. (3.1) and (3.2).

For SU(3) gauge group there is also a k = 2 vortex. However this is follows from a

k → Nc − k replacement in our k = 1 solution. In other words, the k = 2 solution will be

the identical to the above, with the opposite flux (winding).

3.4 Nc = 4

The ZNc string solution for SU(4) gauge group is particularly interesting, as this is the first

instance where we encounter a non-trivial multi-vortex solution, i.e. with winding k > 1.

We only need to consider the cases with k = 1, 2 (the k = 3, 4 vortices are identical to

k = 1, 2 respectively with negative winding).

k = 1 solution. The ansatz follows the general pattern described earlier,

Φ1 =
mi

2








0
√

3ψ1 0 0√
3ψ1 0 2ψ2 0

0 2ψ2 0
√

3ψ3e
iϕ

0 0
√

3ψ3e
−iϕ 0







, (3.20)

Φ2 =
mi

2








0 −i
√

3ψ1 0 0

i
√

3ψ1 0 −i2ψ2 0

0 i2ψ2 0 −i
√

3ψ3e
iϕ

0 0 i
√

3ψ3e
−iϕ 0







,

Φ3 =
mi

2








3κ1 − 2κ3 0 0 0

0 κ2 + 2κ3 0 0

0 0 −κ2 + 2κ3 0

0 0 0 −3κ1 − 2κ3







.

The following expression is used for the gauge field:

Ax =
−y
r2

(

(1 − f)Y1 +

2∑

ℓ=1

gℓ(r)λℓ

)

, Ay =
x

r2

(

(1 − f)Y1 +

2∑

ℓ=1

gℓ(r)λℓ

)

, (3.21)

where

Y1 =
1

4
Diag(1, 1, 1,−3). (3.22)

which yields exp(2πiY1) = Diag(eπi/2, eπi/2, eπi/2, eπi/2). The non-Abelian flux carried by

the vortex is proportional to Y1. The gℓ’s are functions of r vanishing both at r = 0 and

at r → ∞, and λℓ are a basis of diagonal matrices with satisfying,

TrY1λℓ = 0, Trλiλℓ =
1

2
δiℓ. (3.23)

We choose

λ1 =
1√
12

Diag(1, 1,−2, 0), λ2 =
1

2
Diag(1,−1, 0, 0). (3.24)
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Figure 2: The vortex profile for Nc = 4. Left: ψ1 (solid), ψ2 (long dashes), ψ3 (short dashes).

Center: κ1 (solid), κ2 (long dashes), κ3 (short dashes). Right: f (solid), g1 (long dashes), g2
(short dashes).

The string profile can then can be found by the minimization of the energy functional.

We do not write the explicit form as it is quite lengthy. The numerical solutions to the

resulting equations of motion are shown in figure 2.

Since ψ3 vanishes at the origin and all the diagonal elements of Φ3 remain non-zero

at r = 0, we infer that at the core of the vortex solution, a U(1) subgroup of the gauge

symmetry is unbroken and theory is in a Coulomb phase in that region.

k = 2 solution. We now turn to the k = 2 vortex solution. The relevant configuration

for the scalars is now obtained by applying an SU(4) rotation to the Higgs vacuum VEVs,

generated by

Y2 =
1

2
Diag(1, 1,−1,−1) (3.25)

with exp(2πiY2) = Diag(−1,−1,−1,−1). The chromomagnetic flux is also proportional to

Y2. The explicit ansatz is then,

Φ1 =
mi

2








0
√

3ψ1 0 0√
3ψ1 0 2ψ2e

iϕ 0

0 2ψ2e
−iϕ 0

√
3ψ3

0 0
√

3ψ3 0







, (3.26)

Φ2 =
mi

2








0 −i
√

3ψ1 0 0

i
√

3ψ1 0 −i2ψ2e
iϕ 0

0 i2ψ2e
−iϕ 0 −i

√
3ψ3

0 0 i
√

3ψ3 0







,

Φ3 =
mi

2








3κ1 − 2κ3 0 0 0

0 κ2 + 2κ3 0 0

0 0 −κ2 + 2κ3 0

0 0 0 −3κ1 − 2κ3







.

The gauge fields are still given by eq. 3.21, with Y1 replaced by Y2 and

λ1 =
1

2
Diag(1,−1, 0, 0), λ2 =

1

2
Diag(0, 0, 1,−1). (3.27)

As before the vortex profiles can be found numerically and the results are shown in figure 3.
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Figure 3: Profiles for Nc = 4 and k = 2. Left: ψ1 = ψ3 (solid), ψ2 (long dashes). Center: κ1

(solid), κ2 (long dashes), κ3 = 0. Left: f (solid), g1 = g2 (long dashes).

This solution provides a confirmation of the general picture of these non-Abelian vor-

tices in the Higgs vacuum of N = 1∗ theory. They all have an unbroken U(1) gauge group

at their core, while approaching a totally Higgsed phase in the exterior. This is, of course,

consistent with the premise that the Higgs vacuum and its excitations should have a semi-

classical description. Another general feature is that the non-Abelian strings break the

SO(3)C+F symmetry group to a U(1) subgroup. The moduli space of ZNc string solutions

is therefore isomorphic to CP
1 ≃ SU(2)C+F /U(1) for all k and Nc. We will also confirm

this feature of the theory in its large Nc string dual.

The generalization of the vortex ansatz to arbitrary Nc proceeds in a straightforward

fashion and requires introducing 3(Nc − 1) profile functions (ψi, κi, f, gi). In the absence of

any obvious analytical simplifications, we will not pursue this direction further in this paper.

3.5 k-string tensions

The study of non-Abelian k-string tensions is a topic of great interest and is particularly

so in the present context. The non-Abelian vortices of the Higgs vacuum at weak coupling

gYM ≪ 1 are mapped by S-duality of N = 1∗ theory to confining strings at strong coupling

gYM ≫ 1. With the explicit ansätze at hand for general Nc and k, we can compute their

tensions, albeit numerically. We will then compare these results with the known tensions

in a different parametric regime for N = 1∗ theory wherein the vortex strings are almost

BPS. It should be pointed out that when m1 = m2 = m3 = m, the strings are far from

BPS. Nevertheless we will see that the numerical values of the tensions approach the BPS

values as Nc is increased.

The tension of semiclassical non-Abelian strings in the Higgs vacuum of N = 1∗ theory

has been discussed in [20, 22], in the limit

m1 = m2 = m, and m3 ≪ m. (3.28)

In this limit the vortex becomes an almost BPS object, due to the fact that in the limit

m3/m → 0, N = 2 supersymmetry is restored. The theory may then be viewed as softly

broken N = 2∗ theory. The N = 2∗ theory, with m1 = m2 = m and m3 = 0, is realized

in the Coulomb phase due to Φ3 obtaining a VEV. Adding a mass m3 for Φ3 at the

appropriate point on the Coulomb branch moduli space results in complete Higgsing of

the theory due to electric degrees of freedom becoming light and condensing. The profile
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Nc 2 3 4 5 6

k = 1 0.894 0.926 0.943 0.954 0.961

k = 2 0.944 0.954 0.962

k = 3 0.962

Table 1: Values of TNc,k/T
BPS
Nc,k for 2 ≤ Nc ≤ 6 and different k.

functions of the vortices in this limit are simpler, because it is consistent to take the profiles

κj(r) (equivalently, Φ3) as constant. For a BPS vortex the tension is exactly proportional

to the field condensates:

TBPS
Nc,k = 2π

mm3

g2
YM

k(Nc − k). (3.29)

This behaviour is the so-called ‘Casimir scaling’ of k-string tensions.

The case we have focussed attention on this paper is far from the BPS limit with,

m1 = m2 = m3 = m. (3.30)

Using our ansatz above we have numerically evaluated the vortex tension functional TNc,k

for 2 ≤ Nc ≤ 6 and the results are in table 1. In this table we have presented the ratio

of the tensions for the SO(3)C+F symmetric theory to the BPS formula (3.29) extrapo-

lated to m3 = m.

The main conclusion that we can draw from this numerical data is that for large Nc

the k-string tension TNc,k in the theory with m3 = m quickly approaches the BPS tension

formula given by eq. (3.29). There does not appear to be an obvious explanation for this

result. We also note also that for fixed Nc the ratios in the table are, to a very good

approximation, independent of k.

The numerical results for string tension ratios TNc,k+1/TNc,k are also rather striking.

For Nc = 4 we find the following numerical result,

TNc=4, k=2

TNc=4, k=1
= 1.334 (3.31)

while the prediction from Casimir scaling is 4/3. For Nc = 5 we find

TNc=5, k=2

TNc=5, k=1
= 1.501 (3.32)

while the Casimir scaling prediction is 3/2. Finally, for Nc = 6:

TNc, k=2

TNc=6, k=1
= 1.6008,

TNc=6, k=3

TNc=6, k=1
= 1.801, (3.33)

while the Casimir scaling values are 8/5 and 9/5.

The numerical results above are striking in that the tension is not a BPS protected

quantity, so the accuracy of the Casimir scaling law is better than what we could expect.

The Casimir scaling law is only exact in the limit m3 ≪ m, but evidently it is still an
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extremely good approximation also for m = m3 for the cases Nc = 4, 5, 6 which have been

studied numerically. This suggests that in the large Nc theory, the k-string tensions likely

obey a Casimir scaling law in the N = 1∗ theory. This can be best understood by investigat-

ing the known large-Nc string dual of the N = 1∗ theory [8], which we will do in section 5.

4. Effective world-sheet theory

In this section we round off our field theoretic analysis with the construction of the (classi-

cal) world-sheet theory of k-strings in the Higgs vacuum. For SU(2) gauge group this was

already done in [20]. Below we will extend this to SU(Nc) gauge group and general k. We

will also present a new ingredient, namely the effect on the worldsheet sigma model, of a

non-zero θ3+1 angle in the N = 1∗ Yang-Mills theory.

The general class of vortex solutions presented above have the property that they

are invariant only under a U(1) subgroup of the colour-flavour locked SO(3)C+F trans-

formations. This unbroken U(1) is a rotation acting on the pair (Φ1,Φ2) which can be

undone by a gauge transformation. The moduli space of inequivalent solutions is thus

CP
1 ≃ SU(2)C+F /U(1). The associated moduli correspond to the orientational modes of

the magnetic flux in the string solution.

The low-lying excitations of the worldsheet theory of the vortex will involve, apart

from translational zero modes for the center of mass, the adiabatic dynamics of the orien-

tational zero modes. For all Nc and k we see that this is a nonsupersymmetric sigma model

(as in the examples discussed in refs. [20, 32]) with target space CP
1, along with a theta

angle that is related in a special way to the four dimensional Yang-Mills theta angle. The

absence of supersymmetry makes the present situation different from BPS non-Abelian

vortex strings in N = 2 SQCD [11, 15, 12, 14] and also different from the Heterotic vortex

string discussed in refs. [36].

4.1 Kinetic term

Let us consider a vortex oriented along the z axis. In order to obtain the effective world-

sheet theory of the orientational zero modes, we introduce an adiabatic SO(3)C+F rotation

which depends on the world-sheet coordinates (z, t) of the vortex string. Doing so will turn

these moduli (the global rotation parameters) into worldsheet dependent fields. It is best

to perform these steps in singular gauge, i.e. where the scalar fields have no winding at

infinity and the flux is concentrated near the origin as in [12, 14].

Upon a (worldsheet dependent) colour-flavour locked rotation, the triplet of scalar

fields transform in the following way:

~Φ → UF (z, t) ·
(

WC(z, t) ~ΦW †
C(z, t)

)

, (4.1)

where the matrix UF acts in the three dimensional flavour space (2.15) and WC is a colour

transformation (2.16) generated by the Nc dimensional representation of SU(2) generators.

The gauge fields transform as:

Ax,y →WC Ax,y W
†
C . (4.2)
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A transformation dependent on z and t, will of course also generate components of Aµ

along the world-sheet coordinates, as evident from the ordinary gauge transformation As →
WC AsW

†
C + iWC ∂sW

†
C . To be consistent therefore, the full vortex solution will need to be

modified and the radial dependence of the new components of the gauge field have to be

solved for. We will, using a natural axisymmetric ansatz for all Aµ, obtain the worldsheet

effective theory. This can be done along the lines of [32]: As are choosen in gauge space in

such a way that they are perpendicular to the Ax,y and to the derivative ∂s(Ax,y). This is

Let us discuss, for simplicity, the Nc = 2 k = 1 case (already studied in [20]) and

subsequently generalize. In singular gauge

Φ1 =
im

2
ψ1(r)

(

0 1

1 0

)

, Φ2 =
im

2
ψ1(r)

(

0 −i
i 0

)

, (4.3)

Φ3 =
im

2
κ1

(

1 0

0 −1

)

, Ax =
y

r2
f(r)

σ3

2
, Ay =

−x
r2
f(r)

σ3

2
. (4.4)

Since the solution is symmetric under U(1)C+F rotations around the Φ3 axis in flavour

space, to generate a new solution we need to act on it with one of the broken generators.

If this action is chosen to be global, we simply obtain a new solution with the the same

tension as the old one, but with the non-Abelian flux pointing in a different direction in

colour+flavour space. Let us therefore consider a (z, t) dependent rotation around the Φ2

axis without loss of generality. We will use the following worldsheet dependent colour and

flavour transformations:

WC σ3W
†
C = ~n(z, t) · ~σ . (4.5)

Then the following ansätze can be used for the gauge field components As with s = z, t:

As = − (~n× ∂s~n)a σ
a

2
ρ(r) . (4.6)

The gauge orientations for As are dictated by the requirement that they be orthogonal

in colour space, to both Ax,y and ∂sAx,y (after the world-sheet dependent transforma-

tion). We substitute the expression for the gauge fields (4.6) along with the world-sheet

dependendent transformation (4.2) of the solution (4.4), into the action and obtain

S1+1 =

∫

dz dtB2,1(∂s~n)2 , (4.7)

where

B2,1 =
1

g2
YM

∫ ∞

0
dr 2πr

(
ρ′2

2
+

(ρ−1)2f2

2r2
+
m2

2
(2(κ1−ψ1)

2(1−ρ)+(κ2
1+ψ2

1)ρ
2)

)

. (4.8)

It is worth noting that this kinetic term for the world-sheet moduli is generated only by

gauge kinetic terms depending on Fsµ and scalar kinetic terms ∼ |DsΦ1,2|2 of the four

dimensional gauge theory. All other terms including the scalar potential of the gauge

theory are invariant under the combined colour-flavour rotations. In order for the sigma

model coupling to be finite, we need to impose the boundary conditions

ρ(0) = 1 , ρ(r → ∞) = 0. (4.9)
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Nc 2 3 4 5 6
g2
YM

2π BN,1 0.390 1.181 2.343 3.867 5.847
g2
YM

2π BN,2 2.696 4.344 6.710
g2
YM

2π BN,3 6.888

Table 2: Some numerical results for the classical kinetic term for the k-vortex. For Nc = 2 there

is agreement with the value computed in ref. [20].

The Euler-Lagrange equations for ρ(r) and other profile functions can be solved numerically

to yield the kinetic term for the world-sheet moduli fields. The result, shown in table 2 for

SU(2): B2,1 = 0.39 (2π/g2
YM) matches with that of [20].

The generalization of the above arguments to the SU(Nc) case, for each of the stable k-

vortices, is actually straightforward. Now the relevant colour transformations are generated

by the Nc dimensional representation of SU(2) generators. To get the normalization of the

kinetic term of the resulting CP
1 model, we again consider just a rotation around the Φ2

axis so that,

WC J3W
†
C = ~n(z, t) · ~J . (4.10)

Then the following ansatz can be used for the gauge fields along the worldsheet

As = − (~n× ∂s~n)a Jaρ(r) . (4.11)

If we insert these expressions into the gauge theory action, the following term in the vortex

effective theory can be found,

S1+1 =

∫

dz dt
(
BNc,k(∂s~n)2

)
. (4.12)

The general formula for BNc,k is complicated and we can only evaluate it on a case by case

basis, numerically.

For example, for Nc = 3, k = 1 the explicit expression is,

B3,1 =
1

g2
YM

∫

dr2πr

(

2ρ′2+

(
4f2−4gf+5g2

)
(ρ−1)2

4r2
+

1

2
m2
(
4
(
ρ2−2ρ+2

)
κ2

1+ (4.13)

+8(ρ−1) (ψ1+ψ2)κ1+3
(
3ρ2−6ρ+4

)
κ2

2−12(ρ−1)κ2 (ψ1−ψ2)

+2
(
−4ψ1ψ2(ρ−1)2+

(
3ρ2−6ρ+4

)
ψ2

1+
(
3ρ2−6ρ+4

)
ψ2

2

))
)

.

The coefficient is then determined numerically by variation of the action functional with

the boundary conditions ρ(r = 0) = 1 and ρ(r → ∞) = 0. In table 2 are shown the

numerical values for BNc,k for 2 ≤ Nc ≤ 6.

4.2 World-sheet theta angle

Whenever the Yang-Mills theta angle θ3+1 is non-vanishing, a new ingredient appears in

the vortex world-sheet theory. The Yang-Mills theta angle feeds into the world-sheet theory
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as a topological term for the CP
1 sigma model. The coefficient of this topological term,

the world-sheet theta angle denoted as θ1+1, plays a crucial role in the ensuing world-sheet

dynamics. In particular, the IR dynamics is strongly theta-dependent [32, 24 – 26].

We begin by demonstrating the mechanism of generation of the world-sheet theta

angle for SU(2) gauge group. In this case the steps involved and the result are rather

similar to [32]. The relevant terms can be obtained by a colour-flavour transformation that

depends on both z and t. It will be sufficient to consider the following (z, t) dependent

colour-flavour rotation of the vortex fields,

UF = exp(J2α(z)). exp(J1β(t)) , WC = exp
(

i
σ2

2
α(z)

)

. exp
(

i
σ1

2
β(t)

)

. (4.14)

The time and space dependent rotation will generate gauge field components Az and At.

These will have to be chosen normal, in colour space, to Ax,y and their derivatives. Using

the appropriate ansatz, As = −(~n× ∂s~n).(~σ/2)ρ(r), we obtain

Az =

(
σ1

4
sinα sin 2β +

σ2

2
cos2 β − σ3

4
cosα sin 2β

)

ρ(r)α′(z) , (4.15)

At =

(
σ1

2
cosα+

σ3

2
sinα

)

ρ(r) β̇(t) .

Introducing the new world-sheet variations into the space-time action action, the theta

dependent topological term in the Yang-Mills action then gives rise to a topological term

on the world-sheet of the vortex

Sθ
1+1 =

θ3+1

32π2

∫

d4xF a
µν F̃

a
µν =

θ3+1

16π2

∫

dz dtCα′(z)β̇(t) cos β , (4.16)

where

C =

∫ ∞

0
2π dr r

1

2r

d

dr

(
ρ2 − 2ρ)f

)
= π . (4.17)

Note that C is obtained by integrating a total derivative and only depends on the values of

the profile functions at zero and infinity, namely ρ(0) = f(0) = 1 and ρ(∞) = f(∞) = 0.

Written more covariantly, this leads to the following interaction in the vortex effective ac-

tion,

Lθ
1+1 = −θ3+1

8π
ǫs,r ǫabc na∂sn

b∂rn
c s, r = (t, z). (4.18)

This is very similar to the case discussed in ref. [32] and relates the theta angle of the CP
1

model to the Yang-Mills theta angle as

θ1+1 = θ3+1 for SU(2). (4.19)

The general result for arbitrary Nc and k is more illuminating than the SU(2) theory. In

particular, in the general case the world-sheet theta angle is not equal to the space-time

theta angle; the two are related and this relation depends both on Nc and k. We may

consider the most general colour-flavour rotated gauge field configurations in eqs. (4.10)

and (4.11) and evaluate the topological term on these to produce

Lθ
1+1 = −CNc,k

θ3+1

8π2
ǫsr ǫabc na∂sn

b∂rn
c. (4.20)
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The proportionality constant CNc,k is again given by the integral of a total derivative,

C(Nc,k) =

∫ ∞

0
2π dr

d

dr

{
(ρ2 − 2ρ) (f(r)Tr(YNc,kJ3))

}
= π k(Nc − k). (4.21)

This means that for the k-vortex, the theta angle of the world-sheet sigma model is deter-

mined by θ3+1 as

θ1+1 = k(Nc − k)θ3+1. (4.22)

So the long-wavelength fluctuations of the world-sheet theory of the ZNc flux tube carrying

k units of magnetic flux, are governed by the effective action

S1+1 =

∫

dz dt

(

BNc,k(∂s~n)2 − k(Nc − k)
θ3+1

8π
ǫsr ǫabc na∂sn

b∂rn
c

)

, (4.23)

The effective theta angle is an integer multiple of the four dimensional one and is thus

guaranteed to respect the invariance of the Higgs vacuum under θ3+1 → θ3+1 + 2π.

4.2.1 Dynamics on the vortex world-sheet

We have seen that the effective long-wavelength dynamics of the k-vortices in the Higgs

vacuum of N = 1∗ theory with SU(Nc) gauge group (and with three equal masses), is given

by a CP1 model for allNc and k. The four dimensional theory being N = 1 supersymmetric,

the vortices are non-BPS and the effective world-sheet theory is non-supersymmetric. Thus

there are no fermionic super-orientational zero modes. The resulting world-sheet dynamics

is different from that of BPS vortex strings in N = 2 SQCD [11, 12] for example.

It is well-known that the value of the theta angle has a strong effect on the IR dynamics

of the CP
1 model [23 – 26, 38, 32]. First of all the CP

1 model is asymptotically free and so

is a strongly coupled theory. This is interesting: the four dimensional field theory is weakly

coupled, but the dynamics on the vortex is highly quantum. When θ1+1 = 0 and θ1+1 = π,

the model is exactly solvable. Specifically, the spectrum at θ1+1 = 0 is known to consist

of a single massive SO(3) triplet with an exact S-matrix [24] and the theory has a mass

gap. This picture continues to be valid for generic non-zero values of θ1+1. When θ1+1

hits π, however, something drastic happens. The theory has massless excitations and flows

to a c = 1 conformal fixed point [37, 39, 25] described by the SU(2) Wess-Zumino-Witten

model at level k = 1. The spectrum now consists of massless SU(2) doublets. The picture,

therefore, is that at generic θ1+1, the doublets are confined and bound into meson-like

excitations, transforming as a triplet of SO(3). The singlet state, not having a conserved

quantum number, is unstable. It is possible to analyze the spectrum in the vicinity of

θ1+1 = π [32, 38] and can be interpreted as consisting of “kink-anti-kink” bound states.

The string tension between these kinks and anti-kinks (the SU(2) doublets) vanishes as the

vacuum angle approaches π.

The existence of the non-trivial dynamics near θ1+1 = π begs the question: how

is this reflected in the physics of the four dimensional gauge theory? The situation is

particularly intriguing, since nothing obviously drastic happens in the gauge theory when

θ3+1 = π/k(Nc − k). This merits deeper study, but one obvious possibility is that this

concerns the spectrum of confined monopole-dyon states in the Higgs phase. The doublets
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(kinks) are likely to be the bound states of monopoles with the vortex. These monopole-

dyon states exist as massive ’t Hooft-Polyakov monopoles in the N = 2∗ theory in the

Coulomb phase. As θ3+1 is dialled, the spectrum of these massive states undergoes a

rearrangement and can lead to level crossing between certain mutually non-local states

(e.g. the (0,1) monopole and the (1,1) dyon for SU(2)). It is possible that the special

values of θ3+1 may be the points at which such massive, mutually non-local states become

degenerate. If both these states happen to get confined upon breaking the supersymmetry

to N = 1∗, then they can appear bound to the magnetic flux tubes. The appearance of

such mutually non-local states simultaneously on the world-sheet, may drive the sigma

model to an interacting fixed point. We are merely speculating at this stage, but clearly

the issue deserves deeper study.

5. The vortex in the string dual

The string theory dual of N = 1∗ theory was constructed by Polchinski and Strassler [8] by

considering an appropriate deformation of Type IIB string theory on AdS5×S5 background.

The undeformed AdS5×S5 background with Nc units of Ramond-Ramond five form flux is

dual to the large Nc limit of SU(Nc), N = 4 SYM. The relation between gauge theory and

string theory parameters is as follows. The string coupling gs and the radius of curvature

of AdS space are related to the gauge coupling and the ’t Hooft coupling respectively as

4πgs = g2
YM ,

RAdS√
α′

= (4πgsNc)
1/4 ≫ 1 , C0 =

θ3+1

2π
(5.1)

where C0 is the Type IIB RR scalar.

The N = 1∗ mass deformation of the N = 4 theory is achieved by switching on a

non-normalizable mode for the three-form flux G3 = F3 − τH3, with τ = i/gs +C0/2π, the

unperturbed Type IIB coupling. The Polchinski-Strassler dual geometry was obtained by

treating the G3 flux as a perturbation and solving the Type IIB supergravity equations of

motion to linear order in this perturbation. The rich infrared physics of N = 1∗ theory was

captured in the string dual using two central ingredients: the Myers dielectric effect [31]

and the action of SL(2,Z) duality on the vacua of the theory.

The classical description of the N = 1∗ vacua [8], shows that the scalars get noncom-

muting expectation values describing fuzzy sphere configurations [35]. In the language of

D-branes, this means that that Nc D3-branes on which the parent N = 4 theory lives,

acquire non-commuting positions, transverse to their worldvolume. These transverse posi-

tions trace out fuzzy S2’s and the configuration can be reinterpreted as 5-branes wrapped

on concentric flux supported two-cycles carryingNc units of D3-brane charge. The full large

Nc, IIB string dual background interpolates between the “near-shell” geometry generated

by the multiple 5-branes and the asymptotically AdS solution towards the boundary of the

space. Different N = 1∗ vacua, with the theory realized in different phases, are obtained

by the action of the IIB SL(2,Z) transformations on a given fivebrane configuration.
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5.1 Polchinski-Strassler Higgs vacuum

The Polchinski-Strassler description of each N = 1∗ vacuum consists of an asymptotically

AdS geometry with a G3 flux turned on, matching onto an interior geometry generated by

(c, d) 5-branes. For instance, classical vacua preserving an SU(p) gauge symmetry, where p

is a divisor of Nc are described by p coincident D5 branes carrying a net D3 charge, provided

q

p

1

gs
≫ 1 , q =

Nc

p
. (5.2)

When p and q are such that pgs/q ≫ 1, the vacuum with SU(p) gauge symmetry is de-

scribed by q NS5 branes.

The Higgs vacuum is thus described by a single D5 brane carrying net D3 charge, when

Nc

gs
≫ 1 (5.3)

while the confining vacuum is described by a single NS5 brane when

Nc gs ≫ 1 . (5.4)

The former is an extremely weak condition in the large Nc limit, while the latter is the

usual condition for the gauge theory to be strongly coupled. The two vacua and these

two conditions for the validity of the Polchinski-Strassler supergravity description in the

“far-from-shell” region, are exchanged under the S-duality, gs ↔ 1/gs.

In the Higgs vacuum, with m1 = m2 = m3 = m, the metric in the interior matches

onto the geometry generated by a D5-brane wrapped on an S2 carrying Nc units of D3-

charge. The D3-brane worldvolume coordinates are xµ, (µ = 0, 1, 2, 3) wherein the field

theory lives. The six transverse directions are denoted as

wi = x7,8,9 , and yi = x4,5,6. (5.5)

The D3 branes spread out along the wi directions with yi = 0 and the resulting D5-brane

wraps a round sphere of radius

r0 = πα′mNc. (5.6)

The string frame metric of the Polchinski-Strassler solution [8] corresponding to the Higgs

vacuum (D5-brane) with equal masses for the adjoint chiral multiplets and with θ3+1 = 0, is

ds2string = Z−1/2
x ηµνdx

µdxν + Z1/2
y (dy2 + y2dΩ2

y + dw2) + Z
1/2
Ω w2dΩ2

w, (5.7)

where

Zx = Zy =
R4

AdS

ρ2
+ρ

2
−

, ZΩ =
R4

AdS ρ
2
−

ρ2
+(ρ2

− + ρ2
c)

2
, ρ± =

√

y2 + (w ± r0)2. (5.8)

The parameters in the metric are

R4
AdS = 4πgsNcα

′2, ρc = (α′m)
√

gsNcπ . (5.9)
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and r0 is as defined in (5.6). The dilaton is non-constant, approaching its asymptotic value

gs as wi, yi → ∞, but vanishing close to the D5/D3 brane,

e2Φ = g2
s

ρ2
−

ρ2
− + ρ2

c

, C0 = θ3+1 = 0. (5.10)

The Polchinski-Strassler (including the R-R and NS-NS potentials) background has a man-

ifest SO(3) isometry acting on the S2 in the w-plane. This naturally gets identified with

the colour-flavour locked SO(3)C+F symmetry of the Higgs phase of N = 1∗ theory.

The full solution above is approximate, and is constructed by matching the r ≫ r0 limit

with the “near-shell” solution for r ≈ r0. The “far-from-shell” region is well approximated

by the background generated by D3-brane charge density spread out on a spherical shell

and is close to a Coulomb branch configuration. In this regime the D3-brane charge density

dominates over the D5 charge density. The “near-shell” regime is well described by the

exact solution for a flat D5-brane with D3-brane charge [41, 42]. Here the effect of the D5-

brane dominates. The flat D5 solution and the matching used by Polchinski and Strassler

are reviewed in the appendix.

An important feature of the Higgs vacuum geometry is that near the D5-brane, su-

pergravity ceases to be applicable. This is due to large transverse curvatures near the

D5-brane. We will, however, adopt a pragmatic approach and use the metric for our sub-

sequent analysis, with the aim of identifying certain aspects of the gauge theory vortex

dynamics that are robustly captured by the string dual. The questions that we are inter-

ested in, will, perhaps surprisingly, turn out to be insensitive to the strongly curved parts

of the geometry.

The main ingredient we will need from the region near the spherical D5 shell, is the

NS-NS two-form potential (see the appendix for further details),

B2 = − α′πNc

1 + ρ2
−/ρ

2
c

sin θw dθw ∧ dφw . (5.11)

Near the shell there are also the non-vanishing R-R potentials, C2 and C4, which can be ex-

tracted from the flat D5 background discussed in appendix. The form of the R-R potentials

at θ3+1 = 0 will not be relevant for the probe branes that we will study in this section.

The Higgs vacuum solution at any non-zero theta angle for the gauge theory follows

upon acting on the solution with θ3+1 = 0 with an SL(2,R) transformation in IIB super-

gravity. Under such a transformation, τ → τ + θ3+1

2π , the 5-brane remains a D5-brane, but

the two R-R potentials C2 and C0 are shifted as,

C0 → C0 +
θ3+1

2π
C2 → C2 +

θ3+1

2π
B2 . (5.12)

Thus at non zero θ3+1, the R-R two form C2 acquires components along the dθw ∧ dφw

direction which will be relevant for our probes.

5.2 The vortex as a D1-brane

Magnetic flux tubes in the Higgs vacuum have a natural brane interpretation as bound

states of D1-branes with the D5-brane. Such D1-D5/D3 bound states involving the single
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D5-brane in the Higgs vacuum are possible due to the non-vanishing B2 potential on the

5-brane, responsible for the D3-charge. In this situation, the bound state is a semiclassical

instanton of the non-commutative field theory [40] on the 5-brane.

We first review the computation of the D-string tension, dual to a k = 1 vortex, in

the Higgs vacuum geometry, first done in [8]. The two new ingredients in our analysis

will be a derivation of the world-sheet sigma model of the vortex and the effect of the

Yang-Mills theta angle.

Following [8], we model a magnetic vortex as a D1-brane probe in this geometry. The

DBI action for the probe D1 brane in the geometry reads,

SDBI =
1

2πα′

∫

d2ξ
{

e−Φ
√

(−det(Gab +Bab + 2πα′Fab))
}

. (5.13)

Let us consider a D1-brane oriented in the x0, x1 directions and the embedding (ξ0, ξ1) =

(x0, x1), so that the pullback of the metric onto the world-sheet is

G00 = −Z−1/2
x + · · · , G11 = Z−1/2

x + · · · (5.14)

The dots correspond to terms involving fluctuations of the string in the transverse ~y and ~w

directions, proportional to the derivatives ∂0(~y, ~w), ∂1(~y, ~w). While the fluctuations along ~y

coordinates cannot be studied in supergravity due to large curvatures, angular fluctuations

in the ~w directions will appear to be accessible. The part of the DBI action which does

not depend on these derivatives and yields the effective tension of the D1-brane is,

SDBI =
1

2πα′

∫

d2x(Z−1/2
x e−Φ) (5.15)

=
1

2πα′

∫

d2x

√

y2 + (w + r0)2
√

y2 + (w − r0)2 + ρ2
c

gsR2
AdS

.

This is minimized when,

w =
r0 +

√

r20 − 2ρ2
c

2
≈ r0 −

ρ2
c

2r0
, y = 0. (5.16)

Since ρc ≪ r0, the probe D1-brane sits at a relatively small distance δw from the D5 shell,

δw =
ρ2

c

2r0
=
gsα

′m

2
. (5.17)

The dilaton and the functions that determine the metric at this point evaluate to

e−Φ ≈ 2

√

πNc

g3
s

, Z−1/2
x ≈

√
gsNcπα

′m2

2
, Z

1/2
Ω =

1

2

√
gs

(πNc)3
1

α′m2
. (5.18)

The curvature of the space transverse to the D5-brane , i.e., in the radial w and ~y directions

can be seen to be substringy at the value of w giving the location of the D1-brane. However,

as we see below, this value for w corresponds to a large radius sphere in the w1,2,3 space.
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Continuing to use the metric (5.7), the tension of the D1-brane at this location is

TD1 ≈ 2r0ρc

gsR2
AdS

1

2πα′
=

Ncm
2

2gs
=

2πNcm
2

g2
YM

. (5.19)

Remarkably, this formula matches the BPS formula (3.29) for k = 1, in the Higgs vacuum

which is only expected to work for softly broken N = 2∗ theory. This is suggestive that

the vortices at large Nc (and Nc/gs ≫ 1) in the Higgs vacuum become BPS objects.

Equivalently, the confining strings at largeNc and gsNc ≫ 1 (S-dualizing the Higgs vacuum)

obey the BPS tension formula. More evidence in support of this possibility was offered

in [8]. This is also in agreement with our semiclassical results for large Nc.

At its equilibrium position the D1-brane is transverse to a two-sphere at y = 0 and

w = r0 − gsα
′m/2, which is concentric with the dielectric 5-brane sphere. At this location

the radius of the transverse two-sphere is

Z
1/4
Ω w ≈ RAdS

2
=

1

2
(4πgsNc)

1/4
√
α′. (5.20)

Clearly, this is large in string units in the supergravity limit. The D-string is pointlike on

the transverse two-sphere, resulting in a CP
1 moduli space of vortex solutions. The sphere

is large in string units and we can allow for a slow, adiabatic variation of the D1-brane

position on the sphere, as a function of the world-sheet coordinates. The polar coordinate

of the D-string ~nw ≡ (θw, φw), corresponds to the vortex colour-flavour zero mode.

Let us consider an arbitrary dependence of ~nw on the world-sheet coordinates (x0, x1)

and introduce this into the DBI action. Taking into account only the contribution of the

pullback of the spacetime metric, the following world-volume action results,

SDBI =

∫

d2x
e−Φ

2πα′

√
√
√
√
√
√−Det






−Z−1/2
x + (∂0~nw)2w2Z

1/2
Ω (∂0~nw) · (∂1~nw)w2Z

1/2
Ω

(∂0~nw) · (∂1~nw)w2Z
1/2
Ω Z

−1/2
x + (∂1~nw)2w2Z

1/2
Ω






(5.21)

In this formula we have actually omitted the pullback of the B2 field, which only contributes

to a four-derivative term in the vortex world-volume action that we neglect. At the two-

derivative level, we find

SDBI ≈ TD1

∫

d2x

(

1 + (∂s~nw)2
w2Z

1/2
Ω Z

1/2
x

2

)

, (5.22)

where TD1 is the tension of the k = 1 vortex in eq. (5.19). From this we get the ceofficient

of the kinetic term of the CP
1 sigma model,

Lkin =
Nc

4gs
(∂s~nw)2 =

πNc

g2
YM

(∂s~nw)2 . (5.23)

While it is interesting to perform the above formal manipulations, it is not clear that

the classical coupling constant of the sigma model is significant since the CP
1 model is

asymptotically free and the coupling constant will run when the sigma model is quantized.
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Secondly, the coupling can also get large corrections due to stringy effects from the highly

curved transverse parts of the geometry. The coefficient of the topological term in the CP
1

model, on the other hand, has special significance. We now turn to evaluating this from

the D1-brane action.

5.2.1 The theta term

To complete the supergravity analysis of the k = 1 vortex, we will now see how the Yang-

Mills theta terms feeds into the world-sheet sigma model. This feeding-in occurs through

the Chern-Simons terms of the D1-brane world-volume theory,

SCS =
1

2πα′

∫
[

exp(2πα′F2 +B2) ∧
∑

q

Cq

]

=
1

2πα′

∫

[C2 + C0B2] (5.24)

We expect this term to have universal, robust features for two reasons. First, the effect

of a non-zero θ3+1 has to be such that physics is periodic under shifts of the theta angle

by 2π. This is particularly true in the Higgs vacuum which is actually invariant under

such shifts, while the confining vacuum gets mapped to an oblique-confining phase un-

der the same operation. Furthermore, the Wess-Zumino term in the D-brane action is

insensitive to the background metric and may well capture the correct physics even in the

supergravity approximation.

Since the probe D1-brane is located relatively very close to the D5-brane shell, we need

to use the expressions for B2, C2 and C0 given in (5.12), (5.11) and (A.6) for the “near-shell”

region. There is a subtlety surrounding the Wess-Zumino couplings of D-branes involving

the pullback of the B2 field (such as C0 ∧B2 in eq. (5.24)), which has been discussed in the

references [43]. The upshot of this is that the contribution to Wess-Zumino terms from the

pullback of B2 have to be omitted. The term C0 ∧B2 is an effective D(-1) ‘charge’ for our

probe D1, arising from the pullback of the B field. In our case the contribution corresponds

to a D1 world-sheet wrapping an S2 with |~w| ≈ r0−ρ2
c/2r0, which is a homotopically trivial

cycle. From the results of [43], this term is cancelled by bulk contributions, so we have to

drop it from the present calculation.

Finally then, the only relevant term is the pullback of the components of C2 along the

sphere at constant w and y = 0,

SCS =
1

2πα′

∫

C2 =
1

2πα′

θ3+1

2π

∫

B2

∣
∣
θ3+1=0

. (5.25)

In the large Nc supergravity limit, the magnitude of the near shell B field (5.11) at the

the radial position of the D1-brane, is equal to α′πNc. The result is a two-derivative theta

term for the effective CP
1 sigma model,

Lθ =
θ1+1

8π
ǫsr ~nw · (∂s~nw × ∂r~nw) , θ1+1 = Ncθ3+1 (s, r) = x0,1 . (5.26)

This is consistent (at large Nc) with our semiclassical field theory calculation done in the

previous section. Note that if we were to keep the term proportional to C0 ∧B2, we would

find θ1+1 = 2Ncθ3+1, which would be inconsistent with our semiclassical expectation.
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Figure 4: The minimal energy configuration for the probe D3 brane in the ~w space is given by the

red disc and the blue “polar cap” shown in the figure. The “polar cap” part is located very close

to the D5 sphere.

5.3 The k-vortex as a D3 brane

Although we were able to reproduce the sigma model of the k = 1 vortex using the dual

geometry, the tensions and the theta terms for k-strings have a nontrivial dependence on k.

It is not a priori clear that the Polchinski-Strassler geometry should be able to reproduce

these since the IR geometry for the Higgs vacuum will receive large stringy corrections.

However, as before, we will attempt to identify the appropriate D-brane configuration

dual to a magnetic k-string and investigate whether this can compute the tensions and

world-sheet parameters reliably.

It is now well understood in a variety of different confining backgrounds [28] that

k-string tensions with k of order Nc in large Nc theories, are computed by expanded

brane configurations. A collection of multiple probe F/D-strings can blow up into higher

dimensional D-branes by a version of the Myers effect, wrapping topologically trivial cycles.

A similar, very closely related phenomenon also occurs for Wilson loops in general tensor

representations involving sources of varying N -ality in large Nc gauge theories [44 – 46]. In

all these cases, the expanded brane configuration carries a net k-string charge by virtue of

world-volume electric or magnetic fields.

In our large Nc dual to the Higgs vacuum, we look for candidate branes that correspond

to k-vortices with

k → ∞ , Nc → ∞ and
k

Nc
fixed. (5.27)

The most natural object is a D3-brane with topology R
1,1 ×S2, and a nonvanishing (mag-

netic) F2 flux along its compact directions located near the D5 shell. Our candidate probe

D3-brane is sketched in figure 4. It is located at ~y = 0 and has the topology of an S2 (but

not the shape) in the ~w space. We believe this to be the correct configuration for large

enough k. For finite or small k, the S2 of the probe D3-brane will be a small, smooth,

squashed sphere located at some polar angle along the D5-sphere. As k is increased, the

squashed sphere grows in size with k. Most of this probe D3 sphere will want to stay

near the D5 shell where the B2 field is concentrated, in order to minimize its tension. The
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brane will, however, remain blown up due to the magnetic field on its worldvolume which

provides it with the requisite D-string charge. The candidate probe brane also breaks the

SO(3) isometry to U(1) rotations around the w3 axis, as we expect for the k-vortices.

5.3.1 A warm-up

As a warm-up excercise, let us compute the DBI action for a spherically symmetric con-

figuration at constant |~w|, with k units of uniform flux on top of it. This will have higher

tension than the D-brane in figure 4. We choose a constant world-volume magnetic field

F2 along the (θw, φw) directions and proportional to the volume form of S2,

F2 =
k

2
sin θwdθw ∧ dφw. (5.28)

The magnetic field induces a D-string charge k for the spherical D3-brane, through its

Chern-Simons coupling

SCS =
1

(2π)3α′2

∫

S2×R1,1

2πα′F2 ∧ C2 =
1

2πα′
k

∫

R1,1

C2. (5.29)

The tension for the spherical D-brane will be obtained by minimizing the DBI action with

respect to w.

SDBI = 4π

∫

d2x





Z

−1/2
x e−Φ

(2π)3α′2

√
√
√
√
√ZΩw4 + 4π2




kα′

2
− Nα′

2

1

1 + (w−r0)2

ρ2
c





2



 . (5.30)

The tension is minimized at w ≈ r0 (in the large Nc limit) and we obtain for the SO(3)

symmetric setup

TD3 ≈ 2π
m2

g2
YM

Nc(Nc − k) . (5.31)

We will see that the tension of the configuration in figure 4 will be lower than the above

and so the SO(3) symmetric k-string cannot be stable.

5.3.2 The k-vortex

Now let us compute the energy of the configuration in figure 4. It consists of two parts: i)

one which is a piece of a sphere subtending the solid angle parametrized by

0 ≤ θw ≤ η̄k , and 0 ≤ φw ≤ 2π, (5.32)

that we refer to as the polar cap, and ii) a disc glued to the bottom of the cap. The two

parts are distinguished by the fact that polar cap lies close to the D5 shell at w ≈ r0 where

the B2 field reaches its maximum. Since B2 is non-zero only within a thin region (5.11) of

width ρc ≪ r0, the disc portion of the expanded brane only sees a vanishing antisymmetric

tensor potential. In fact the geometry seen by the disc in the interior of the D5-sphere is

basically flat. As a consequence of this, the polar cap can minimize its tension by having

a magnetic field switched on that completely cancels the pullback of B2. This means that
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the polar cap is close to the D5-sphere and is practically tensionless (suggesting that it is

possibly dissolved in the D5). In fact the entire tension of the configuration arises from the

disc. The disc itself cannot shrink since its boundary must match on to the boundary of the

polar cap, and the size of the latter is fixed by the net D-string charge. Also, in the absence

of any B2 field in the interior of the D5-sphere, the disc has no world-volume magnetic field.

Let us first discuss the polar cap. The D3 world-volume is parameterized by the

coordinates (x0, x1, φw, θw). With this portion of the brane at constant |~w| ≈ r0 and ~y = 0,

we take the F2 field to be proportional to the volume form of the two-sphere

F2 =
k

(cos η̄k − 1)
sin θw(dθw ∧ dφw) (5.33)

where 0 ≤ θw ≤ η̄k and 0 ≤ φw ≤ 2π. The normalization is chosen so that this yields

a D-string charge k for the blown up D3-brane. The D1-charge density is concentrated

entirely in the polar cap portion.

The DBI action for the probe D3-brane reads

Scap =
1

(2π)3α′2

∫

d4ξ
{

e−Φ
√

(−det(Gab +Bab + 2πα′Fab))
}

. (5.34)

where

Gab +Bab + 2πα′Fab =









−Z−1/2
x 0 0 0

0 Z
−1/2
x 0 0

0 0 Z
1/2
Ω w2 (2πα′Fθφ +Bθφ)

0 0 −(2πα′Fθφ +Bθφ) Z
1/2
Ω w2 sin2 θw









. (5.35)

From this we find the tension of the cap to be

Scap =

∫

d2xdφwdθw sin θw





Z

−1/2
x e−Φ

(2π)3α′2

√
√
√
√
√ZΩw4 + 4π2




kα′

1 − cos η̄k
− Nα′/2

1 + (w−r0)2

ρ2
c





2



. (5.36)

The action for the polar cap needs to be extremized with respect to both w and η̄k. We

find that there is a minimum at which the tension vanishes exactly for |~w| = r0 and

(1 − cos η̄k) =
2k

Nc
. (5.37)

Since the action is positive definite and it vanishes exactly at the above values of w and

η̄k, we have found the global minimum of this contribution to the tension. The pullback of

B2 is exactly cancelled by the magnetic field and the volume of the cycle goes to zero near

w = r0 due to vanishing ZΩ and the brane becomes tensionless. At this point we expect

significant stringy corrections and the DBI approach is invalid. These will likely change the

tension for the polar cap, but it is not clear whether the result will become comparable to

the much larger contribution to the tension from the disc at the bottom of the polar cap.
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The disc lies for most of its extension at |~w|−r0 ≫ ρc. In this limit the relevant metric

(at ~y = 0) is

ds2
∣
∣
w−r0≫ρc

=
w2 − r20
R2

AdS

dxµdxνη
µν +

R2
AdS

w2 − r20
(dw2 + w2(dθ2

w + sin2 θwdφ
2
w)) (5.38)

and the dilaton is simply eΦ = gs. The B2 field is also small in this region. Hence, the disc

portion of the probe D3 has two space-time directions (x0, x1), and two directions in the

~w space, without fluxes. The warp factors from the two different subspaces cancel out and

then the resulting DBI action is equivalent to the one for a membrane in flat space with

fixed perimeter. So the tension of the disc is given by its area in flat space,

TD3 ≈ 1

(2π)3α′2

1

gs

(
πr20 sin2 η̄k

)
=

m2

2gs
k(Nc − k) . (5.39)

which is indeed less than the tension of the SO(3) symmetric ansatz in eq. (5.31). This

gives the tension of the k-vortex and remarkably, matches our weak coupling semiclassical

results and the softly broken N = 2∗ formula. In this analysis we neglected the small

region at w − r0 . ρc; a more careful DBI analysis yields

TD3 =
1

gs(2π)2α′2

∫ r0 sin η̄k

0

√

1

(r0 cos η̄k)2 + s2

(

s2 + (r0 cos η̄k)2
(w − r0)2

(w − r0)2 + ρ2
c

)

sds .

(5.40)

The formula is obtained following a non-trivial cancellation between the dilaton and the

metric warp factors. Clearly for |w − r0| ≫ ρc, the result is given by the area of the flat

disc. It is a good approximation to ignore ρc relative to the disc radius, since

ρc

r0
=

√
gs

Ncπ
≪ 1. (5.41)

It is straightforward to check that a more careful extremization does not change the result

at the leading order in gs.

A rather interesting cross-check of the picture above results when one determines the

tension of the same kind of configuration (a polar cap with a disc glued) with generic values

of η̄k, i.e. where η̄k is allowed to be a free parameter instead of being determined by the

k-string charge. The resulting tension formula is then

TD3(η̄k, k) =
m2

2gs

(
N2

c sin2 η̄k

4
+Nc

∣
∣
∣
∣
Nc

1 − cos η̄k

2
− k

∣
∣
∣
∣

)

, (5.42)

which, indeed always has a minimum at the value of η̄k given by eq. (5.37), as shown in fig-

ure 5.

5.3.3 Theta term in world-sheet sigma model

Since our expanded D3-brane configuration breaks the SO(3) isometry to U(1), it follows

that small fluctuations of the orientations of the configuration along the D5-sphere, will

lead to a 1 + 1 dimensional sigma model with target space CP
1. As usual, all potentially
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Figure 5: Energy as a function of η̄k for N = 10, k = 3. The blue line is proportional to the

energy of the “polar cap”, the red one to the energy of the flat disc and the black line is the sum

of the two contributions. The minimum is given by eq. (5.37).

interesting physics lies in the theta angle of this sigma model. From this picture it is

straightforward to find also the θ1+1 of the effective S2 sigma model. This comes from the

following Chern-Simons coupling in the D3-brane theory,

SCS
cap =

1

(2π)3α′2

∫

cap
C2 ∧ (2πα′F2) . (5.43)

For θ3+1 6= 0, the components of C2 tangential to the polar cap, can be read off from (5.11)

and (5.12). Note that the only non-zero contribution comes from the polar cap, since it

has a magnetic field,

F2 =
Nc

2
sin θw(dθw ∧ dφw) . (5.44)

Let us denote with ~nw, the position of the North Pole at the center of the polar cap and

for simplicity, let us orient ~nw in the w3 direction. We also denote the position vector of

any point on the polar cap as

~p = (sin θw cosφw, sin θw sinφw, cos θw) . (5.45)

Now, we want to consider the effect of an infinitesimal displacement of the entire polar cap

following from the action of a rotation generator in SO(3)/U(1). We allow this displacement

to have an adiabatic dependence on the non-compact coordinates x0 and x1. Under the

infinitesimal change ~nw transforms as

~nw → ~nw + ∂0~nw dx
0 + ∂1~nw dx

1 . (5.46)

The corresponding displacement for a generic point ~p on the polar cap is,

~p→ ~p+ ∂0~p dx
0 + ∂1~p dx

1 . (5.47)

It is easily seen that the variations in the position vector ~p are related to the change in ~nw as

∂s~p = (~nw × ∂s~nw) × ~p . (5.48)

Armed with these relations between the variations in ~p and those in ~nw, we turn to the

Chern-Simons term (5.43) in the D-brane action. First of all the pullback of C2 can be
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re-expressed in terms of the unit vectors corresponding to the location of each point on the

polar cap

P [C2] = −θ3+1α
′Nc

2
(∂0~p× ∂1~p) · ~p dx0 ∧ dx1 , (5.49)

which can be written in terms of the unit polar vector ~nw as

P [C2] = −θ3+1α
′Nc

2
cos θw (∂0~nw × ∂1~nw) · ~nw dx

0 ∧ dx1 . (5.50)

We substitute this in eq. (5.43) and integrate over the polar angles of the cap to obtain

the topological term in the world-sheet sigma model of the k-vortex

Lθ = −k(Nc − k) θ3+1

8π
ǫsr~nw · (∂s~nw × ∂r~nw) . (5.51)

Once again, despite potential issues with regard to the high curvatures in the vicinity of

the D5-sphere, the answer is in agreement with the physics at g2
YM ≪ 1 and is invariant

under shifts of the Yang-Mills theta angle by multiples of 2π. As before, one likely reason

for the robust nature of the result is that it originates from the Chern-Simons couplings of

the D3-brane.

The coefficient of the kinetic term B̃Nc,k is a trickier issue in the probe D3 approach.

We have already remarked that this will flow in the quantized sigma model. Nevertheless

it is an object that we can formally estimate. The contribution to this quantity from the

cap is zero; there is a non-zero contribution from the disc that we will estimate here. Let

us parameterize the disc in the ~w space with the coordinate ~q:

~q = (s cosφ, s sinφ, r0 cos η̄k) . (5.52)

The infinitesimal variation of ~q is

∂~q

∂xs
=

(

~nw × ∂~nw

∂xs

)

× ~q , (5.53)

which upon inserting in the DBI action, yields

Lkin = B̃Nc,k

(
∂~nw

∂xs

)2

, (5.54)

where

B̃Nc,k =

∫

dsdφ







R4
AdSs

(
s2 cos2(φ) + cos2(η̄k)r20

)
√

((r0−w)2+ρ2
c)s2+cos2(η̄k)r2

0
(r0−w)2

(s2+cos2(η̄k)r2

0)((r0−w)2+ρ2
c)

16gsπ3α′2 (w + r0)
2
(

(r0 − w)
2
+ ρ2

c

)






, (5.55)

which scales as 1/
√
gs and not as 1/gs as we would expect from the field theory and also

from the D1 probe calculation. The contribution from the interior of the disc is O(g0
s ). The

leading contribution of order O(1/
√
gs) comes from the boundary of the disc at w−r0 ≈ ρc.

This is the region nearby the intersection between the cap and the disc and indeed there

we can not trust our guess for the shape of the D3 brane probe.

– 33 –



J
H
E
P
1
2
(
2
0
0
8
)
0
7
7

5.4 Relation to the baryon vertex

In the context of gravity duals of gauge theories, there exists a close relationship between

baryons and flux tubes. Flux tubes are made of the same material as baryons, first seen

in the context of the baryon vertex in N = 4 theory [47, 48] and subsequently for gravity

duals of confining gauge theories [49 – 51]. In all these examples, a baryon vertex with Nc

strings attached, represented by a wrapped D5-brane for example, can be deformed and

pulled apart into groups of constituent quarks connected by a flux tube. The portion of

the D5-brane that looks like a flux tube in the gauge theory is obtained by the 5-brane

wrapping an S4 ⊂ S5.

Polchinski and Strassler [8] argued that a D5-brane baryon vertex of the UV N = 4

theory, when taken to the IR by moving towards the interior of the N = 1∗ geometry,

eventually meets the dielectric 5-brane spheres in the interior. In the confining vacuum

when the baryon vertex is moved past the NS5-sphere, by the Hanany-Witten process of

brane creation [52], the D5-brane baryon vertex turns into a D3-brane ball filling the space

inside the NS5-sphere. Following a similar logic applied to a D5-brane wrapping an S4

inside the S5 in the far UV geometry, in the IR we would expect the ZNc flux tube to

be a D3-brane with world-volume R
1,1 × D2 where the D2 is a disc stretching inside and

ending on the dielectric sphere. The magnetic flux tube would essentially be the same

type of object, obtained by S-duality on the confining vacuum. It is encouraging to see

that the crucial portion of our candidate k-vortex, the expanded D3-brane, is precisely

such a D3-brane disc. The tension of the magnetic flux tube arises entirely from this disc.

Nevertheless, the polar cap was crucial for providing the boundary condition that stabilized

the disc, and for providing the magnetic field responsible for k units of D-string charge. It

would be interesting to understand better, the precise connection between the two slightly

differing pictures.

5.5 Confining vacuum

We conclude our discussion on flux tubes in the Polchinski-Strassler dual, with a brief

analysis of k-strings in the confining vacuum. First of all we note that the tension of the

k-string in the confining phase at strong coupling g2
YMNc ≫ 1 is simply the S-dual of the

magnetic k-string tension in the Higgs vacuum at weak coupling or Nc/g
2
YM ≫ 1. Hence

we learn that at least at large Nc, and large ’t Hooft coupling, the confining k-strings must

obey a Casimir scaling law,

T confining
Nc,k = m2 g

2
YM

8π
k(Nc − k). (5.56)

A direct confirmation of this from the corresponding expanded D3-brane in the confining

vacuum geometry would be useful, but we leave this for future study. The Casimir scaling

for confining string tensions is in contrast to previously encountered sine laws and approx-

imate sine laws in other confining theories [28 – 30]. The confining vacuum is manifestly

SO(3) invariant in the absence of any VEVs for the adjoint scalars.

Below we outline the calculation of the tension for a k = 1 flux tube in the confining

vacuum (first done in [8]) to see how it is consistent with the action of S-duality. The
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configuration corresponding to the confining vacuum is an NS5-brane wrapped on a sphere.

The corresponding supergravity background can be found via S-duality from the Higgs

vacuum with the fields and the parameters transforming as

gs → g̃s =
1

gs
, α′ → α̃′ = gsα

′, exp(Φ) → exp(Φ̃) = exp(−Φ), (5.57)

ds2 → ds̃2 = gs exp(−Φ)ds2, (B2, C2) → (B̃2, C̃2) = (−C2, B2) .

The profile functions for the new background metric are then

Zx = ZΩ =
R4

AdS

ρ2
+(ρ2

− + ρ2
c)
, Zy =

R4
AdS(ρ2

− + ρ2
c)

ρ2
+ρ

4
−

, (5.58)

with the metric having the same form as (5.7). The parameters in the metric and the

dilaton are,

r0 = (α′m)πgsNc, ρc = (α′m)
√

πgsNc, e2Φ = g2
s

ρ2
− + ρ2

c

ρ2
−

. (5.59)

This is the background for θ3+1 = 0. The confining string of the gauge theory is identified

with the F-string (dissolved in the NS5 sphere), which couples directly to the string metric.

The action for the probe fundamental string is

SF1 =
1

2πα′

∫

d2x
{√

−det(Gab) +Bab

}

, (5.60)

with the string oriented in the x0, x1 directions. Upon evaluating this action we find

SF1 =
1

2πα′

∫

d2x(Z−1/2
x ) (5.61)

=
1

2πα′

∫

d2x

√

y2 + (w + r0)2
√

y2 + (w − r0)2 + ρ2
c

R2
AdS

.

The location of the minimum is the same as in the D5 case and the resulting string tension

TF1 =
m2gsNc

2
, (5.62)

is exactly the S-dual of the vortex tension. At the radial position of the string |w − r0| ≈
ρ2

c/2r0 = α′m/2 ≪ r0, the radius of the sphere with constant w is
√
α′πgsNc which is

large in string units. It is interesting that the flux tube in the strongly coupled confining

vacuum appears to break the global SO(3) invariance, as it is point-like on the sphere.

This is counter-intuitive, since the SO(3) is an exact global symmetry of the confining

vacuum and not a colour-flavour locked transformation as in the Higgs vacuum. So we do

not expect the confining strings to have any orientational zero modes. This should become

manifest upon quantizing the associated sigma model, whereby the quantum wavefunction

spreads over the entire classical moduli space and the classical zero modes are removed.

To obtain the classical sigma model for the flux tube, we can allow the string to fluctuate

in the directions tangential to the sphere and these would give the action for the “classical
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orientational zero modes” of the confining string flux tube. From the Nambu-Goto action

for the string we get

SF1 =

∫

d2x
1

2πα′

√
√
√
√Det

(

−Z−1/2
x + (∂0~nw)2w2Z

1/2
Ω (∂0~nw)(∂1~nw)w2Z

1/2
Ω

(∂0~nw)(∂1~nw)w2Z
1/2
Ω Z

−1/2
x + (∂1~nw)2w2Z

1/2
Ω .

)

(5.63)

The effective action at the two-derivative level is

SF1 =

∫

d2x

(
gsNc

4
(∂s~nw)2

)

. (5.64)

It is nice to see that the classical coupling is exactly S-dual to the one for the D-string.

The theta dependence of the sigma model action could provide us with further clues about

the worldsheet dynamics of these flux tubes. However, the confining background above is

for θ3+1 = 0. Shifting the Yang-Mills theta angle by multiples of 2π changes the vacuum

to one in an oblique-confining phase and the NS5 brane to a (1, n) 5-brane. If we dial

θ3+1 as was done in the Higgs vacuum using an SL(2,R) shift, this does not alter the B2

field, although it does change the R-R potential C2. However, the former does not have

components along the NS5 sphere, whilst only the RR two form does and we do not know

how this couples to the F1 world-sheet in a simple way.

6. Summary and further questions

In this paper we have first studied solitonic k-vortices in the Higgs vacuum of the SU(Nc)

N = 1∗ theory with equal adjoint masses, transforming under an SO(3)C+F symmetry

group. We have found that for every k and Nc the vortex world-sheet theory is a non-

supersymmetric S2 sigma model. Perhaps the most interesting feature of the two dimen-

sional world-sheet theory is the relation between its theta angle and the four dimensional

one, θ1+1 = k(Nc − k)θ3+1. This has very specific implications for the IR dynamics of the

sigma model which is asymptotically free and for general values of θ1+1, has a mass gap

with the spectrum consisting of a triplet of SO(3). When θ1+1 = π however, the theory

is integrable and the spectrum consists of massless doublets of SO(3) and the theory flows

to a c = 1 conformal fixed point. The doublets of SO(3) which are confined into meson-

like triplet states become deconfined and massless at θ1+1 = π. However this value of

the world-sheet theta angle corresponds to a seemingly non-special value of the spacetime

theta angle. We have speculated on the possibility that the values:

θ3+1 =
π

k(Nc − k)
,

may correspond to a level crossing in the semiclassical spectrum of massive, mutually non-

local monopole-dyon states of the parent N = 2∗ theory in the Coulomb phase. These

states would be confined in the Higgs vacuum and appear as SO(3) doublets bound to a

k-vortex. We have not presented any evidence for this, but clearly, further study of the

relation between the vortex world-sheet spectrum and the spectrum of the four dimensional

theory will reveal interesting physics.
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The relation between the theta angles on the worldsheet and spacetime also implies that

instantons of charge one in the k-string CP
1 sigma model correspond to multi-instantons

in the four dimensional theory.

Yet another feature of our non-Abelian string solutions is that their tensions, evaluated

numerically, are extremely well approximated by the Casimir scaling law,

TNc,k =
2πm2k(Nc − k)

g2
YM

,

for large Nc. This is remarkable in that the Casimir scaling formula is known to be valid

for vortices in the softly broken N = 2∗ theory because of “almost N = 2 SUSY” and the

resulting string solutions are BPS. Our solutions are far from BPS and the agreement with

the BPS tension formula, at large Nc is surprising and needs further explanation. The

semiclassical Higgs vacuum is mapped by S-duality to the confining vacuum at strong ’t

Hooft coupling and so confining string tensions in this regime will also obey Casimir scaling.

We have identified the supergravity duals of the vortex strings in the large Nc limit

of N = 1∗ theory. The dual IIB string background, due to Polchinski and Strassler, has a

parametric regime of validity Nc/gs ≫ 1, which includes the semiclassical regime of weak

gauge coupling. For this reason, and more explicitly from the form of the metric itself

which is sourced by a D5-brane in the IR, it is expected that the IR physics of the Higgs

vacuum lies outside the regime of supergravity due to large curvatures. We find it surprising

therefore, that we were not only able to identify the candidate objects dual to k-vortices

in the large Nc limit, as expanded D3-branes, but also able to compute their tensions and

find an exact Casimir scaling in agreement with the semiclassical results. As a bonus we

were able to reproduce the semiclassical relation between the Yang-Mills theta angle and

the worldsheet theta angle from the candidate wrapped, D-brane configurations. It would

definitely be useful to understand better the reason for this agreement and connect to some

kind of large Nc BPS property.

The Higgs vacuum of N = 1∗ theory, in the large Nc limit, has been argued to pro-

vide a deconstruction of six dimensional supersymmetric gauge theory compactified on a

fuzzy sphere [34]. In this picture, the vortices may be reinterpreted as noncommutative

instantons [40] of the six-dimensional theory. This presents a potentially fruitful arena for

systematically investigating the Higgs vacuum vortices, at least in the large Nc limit [53] ,

and may explain some of the surprising features above at large Nc. Finally, a closely related

situation arises in the beta deformation of N = 4 theory at special values of β, wherein the

resulting theory in its Higgs phase has been argued to deconstruct Little String Theory [33].

Acknowledgments

The authors would like to thank A. Armoni, C. Hoyos-Badajoz, K. Konishi, B. Lucini, C.
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A. “Near shell” background: flat D5 and NS5 with D3 charge

Below we quote the form of the “near-shell” background in the Higgs (D5) and confining
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(NS5) solutions of Polchinski and Strassler. In the Higgs (confining) phase, the “near-shell”

solutions are directly read off from the metric in string frame for p flat D5-branes (NS5

branes) with D3-brane charge bound to them [41, 42]:

D5/D3 background.

ds2 =
dxµ dxνη

µν

√

1 + S2

α′2u2

+

√

1 + S2

α′2u2

S2

α′2u2 cos2 ϕ+ 1
(dx2

4 + dx2
5) + α′2

√

1 +
S2

α′2u2
(du2 + u2dΩ2

3) (A.1)

where

S =

√

gspα′

cosϕ
, (A.2)

and tanϕ is proportional to the density of D3 brane charge dissolved on the D5-branes.

The dilaton and the B fields are given by:

e2Φ = g2
s

α′2u2

S2 cos2 ϕ+ α′2u2
, B45 = − S2 sinϕ cosϕ

S2 cos2 ϕ+ α′2u2
. (A.3)

The RR potentials are:

C2 = ±2
S2 cosϕ

gs
sin2 θ cosφ1 dθ ∧ dφ2 , (A.4)

C4 = ∓2S2 sinϕ

gs

r2 + S2/2 cos2 ϕ

r2 + S2 cos2 ϕ
sin2 θ cosφ1dx5 ∧ dx4 ∧ dθ ∧ dφ2 (A.5)

±sinϕ

gs

r2

r2 + S2
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

where (θ, φ1, φ2) are the standard coordinates in S3.

In the decoupling limit α′ → 0, tanϕ → ∞ with α′ tanϕ = b held constant, after the

rescaling x̃4,5 = tanϕx4,5, the solution reads:

ds2 = α′

(
u

gspa

(
dx̃2

4 + dx̃2
5

1 + a2u2
+ dxµ dxνη

µν

)

+
gspa

u
(du2 + u2dΩ2

3)

)

, (A.6)

e2Φ = g2
s

a2u2

1 + a2u2
, B45 = − α′

gspa2

1

1 + a2u2
,

where we have defined

a =

√

α′ tanϕ

gsp
. (A.7)

The identification used in the Polchinski-Strassler solution to interpolate between the

near-shell and the asymptotic metric is,

u =
ρ−
α′
, a =

1

pm
√
gsNcπ

x̃4,5 =
1

pα′m2πNc
w1,2 . (A.8)
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NS5/D3 background. The metric in string frame for p flat NS5-branes with D3-brane

charge (in the appropriate decoupling limit) is,

ds2 =
α′gs

2

pa2

(
dx̃2

4 + dx̃2
5√

1 + a2u2
+
√

1 + a2u2dxµdxνη
µν

)

+α′p

√
1 + a2u2

u2
(du2 + u2dΩ2

3) . (A.9)

The dilaton and the C2 fields are:

e2Φ̃ = gs
2 1 + a2u2

a2u2
, C2 = −gs

2α′

a2p

1

1 + a2u2
dx̃4 ∧ dx̃5 . (A.10)

In the confining vacuum, the identification used in the PS solution between near-shell and

the asymptotic metric is,

u =
ρ−
α′gs

, a =

√
gs

pm
√
Ncπ

x̃4,5 =
1

p gsα′m2πNc
w1,2 . (A.11)
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